'समानो मन्त्र: समिति: समानी'

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2023

CC14-MATHEMATICS

Partial Differential Equations and Applications

Time Allotted: 2 Hours
The figures in the margin indicate full marks.
Symbols have their usual meaning.

GROUP-A

Answer any four questions

1. Determine the region in the $x y$-plane in which the P.D.E. $\left(1-x^{2}\right) u_{x x}=u_{y y}$ is 3 hyperbolic.
2. Find the nature of the P.D.E. and find its characteristic variables:

$$
\begin{equation*}
u_{x x}+2 u_{x y}+4 u_{y y}+2 u_{x}+3 u_{y}=0 \tag{3}
\end{equation*}
$$

3. Solve $z=p x+q y+p^{2}+q^{2}$.
4. Define Cauchy problem for one dimensional wave equation.
5. Reduce the equation $u_{x x}+x^{2} u_{y y}=0$ to canonical form.
6. Show that the pedal equation of a central orbit is given by $\frac{h^{2}}{p^{3}} \frac{d p}{d r}=F$.

GROUP-B

Answer any four questions
7. Solve $u_{t}=c^{2} u_{x x} ; u(0, t)=0=u(l, t)$ for all t and $u(x, 0)=f(x)$ for all $x \in[0, l]$.
8. By using D'Alembert's principle, solve the following P.D.E.

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}} ;-\infty<x<\infty \\
& u(x, 0)=\sin x ; \frac{\partial u}{\partial t}(x, 0)=1 .
\end{aligned}
$$

9. Use method of separation of variables to solve

$$
\begin{aligned}
& 3 \frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial y}=0 \\
& u(x, 0)=4 e^{-x}
\end{aligned}
$$

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHCC14/2023

10. Derive the heat conduction equation.
11. Find the integral surface of $p q=x y$ which passes through the curve $z=x, y=0$; by using the method of characteristics.
12. A particle is projected with a velocity V from the cusp of an inverted cycloid down the arc. Show that the time of reaching the vertex is $2 \sqrt{\frac{a}{g}} \tan ^{-1}\left(\frac{\sqrt{4 a g}}{V}\right)$.

GROUP-C

Answer any two questions

13.(a) Determine the characteristics of the equation $z=p^{2}-q^{2}$ and find the integral surface which passes through the parabola $4 z+x^{2}=0, y=0$.
(b) Show that the equations $x p-y q=x, x^{2} p+q=x z$ are compatible and find their solution.
14.(a) Eliminating the arbitrary functions $f(x)$ and $g(y)$ from $z=y f(x)+x g(y)$, obtain the P.D.E. $x y s=p x+q y-z$.
(b) Deduce D'Alembert's formula of the Cauchy problem

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} ;-\infty<x<\infty, t>0 \text { subject to the conditions: } \\
& u(x, 0)=f(x), u_{t}(x, 0)=g(x) \text { for }-\infty<t<\infty .
\end{aligned}
$$

15.(a) Solve by Lagrange's method

$$
\begin{equation*}
p y+q x=x y z^{2}\left(x^{2}-y^{2}\right) . \tag{4}
\end{equation*}
$$

(b) State Cauchy-Kowalevski theorem and prove it for the following problem:

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=F(x, t), 0<x<l, t>0
$$

subject to the conditions

$$
u(x, 0)=f(x), u_{t}(x, 0)=g(x) \text { for } 0 \leq x<l \text { and } u(0, t)=u(l, t)=0, t \geq 0
$$

16.(a) Find the temperature distribution in a rod of length l. The faces are insulted and the initial temperature distribution is given by $x(l-x)$.
(b) Give an example of a quasi-linear P.D.E. Discuss the method of characteristic to solve the following quasilinear P.D.E.

$$
P p+Q q=R
$$

and also show that the Lagrange's auxiliary equation is given by

$$
\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}
$$

